Penerapan Algoritma K-Means Clustering Untuk Menentukan Kelas Kelompok Bimbingan Belajar Tambahan
Abstract
Additional learning is a learning program that is carried out outside the school's intracurricular program. This means that additional learning activities are carried out after the regular learning program at school has ended The learning mentor comes from the subject teacher at the school concerned. It is commonly called the afternoon additional learning program. The afternoon additional learning program has its own planning schedule. Additional learning is carried out by students to improve their understanding and deepening of subject material. This goal is related to the preparation of a student to face exams at school, both midterm exams, semester final exams and national final exams. In determining the class of this additional study group using the K-Means Clustering algorithm, the number of data samples will be used is 26 students majoring in science.
References
Sri Tria Siska (2016). Analisa Penerapan Data Mining Untuk Menenyukan Kubikasi Air Terjual Berdasarkan Pengelompokan Pelanggan Menggunakan Algoritma K-Means Clustering. Vol. 9. 1 April 2016, ISSN : 2086-4981
Bendri Melpa Metisen dan Herlina Latipa Sari (2015). Analisis Clustering Menggunakan Metode K- Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila. Vol. 11 No. 2, September 2015, ISSN : 1858 – 2680.
Asroni dan Ronald Adrian (2015). Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interfase Studi Kasus Pada Jurusan Teknik Informasi UMM Magelang. Vol. 18, No. 1, 76-82, Mei 2015.
Nurul Romawati W, et al (2015). Implementasi Algoritma K-means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Vol. 01, No. 2, 30 April 2015, ISSN : 2407-3911
Fina Nasari dan Surya Darma (2015). Penerapan K- Means Clustering Pada Data PenerimaanMahasiswa Baru. ISSN : 2302-3
Copyright (c) 2022 Jurnal Sistem Informasi

This work is licensed under a Creative Commons Attribution 4.0 International License.