RANCANG BANGUN APLIKASI DATA MINING DENGAN ALGORITMA FP-GROWTH PADA DATA PENJUALAN SPAREPART MOBIL SUZUKI RADIO DALAM

  • Qonita Adinda Putri Institut Teknologi dan Bisnis Ahmad Dahlan
  • Diana Yusuf Institut Teknologi dan Bisnis Ahmad Dahlan
  • R.Tommy Gumelar Institut Teknologi dan Bisnis Ahmad Dahlan
Keywords: Spareparts, Web Mining, FP-Growth Algorithm, Association rules

Abstract

Suzuki Radio Dalam is an automotive company operating in the automotive sector. They have been facing a challenge where sales data of spare parts has been accumulating without being effectively utilized or managed. The company has never employed data mining techniques to extract meaningful patterns or insights from this spare parts sales data. To address these issues, the researchers adopted the data mining technique known as the FP-Growth algorithm. The FP-Growth algorithm is a form of association algorithm within data mining. Association algorithms are utilized to uncover relationships and connections between variables present in a dataset. Through the application of the FP-Growth algorithm, data can be extracted through the construction of FP-Trees, which reveals insights into patterns of items purchased by customers. This method allows for the identification of frequently co-purchased items, enabling the company to devise marketing strategies aimed at boosting spare parts sales. The proposed solution involves creating a web-based platform to facilitate the FP-Growth algorithm calculations, particularly when dealing with large volumes of data. This web-based system was developed using PHP and utilizes a MySQL database. This data is then subjected to FP-Growth algorithm calculations and subsequently analyzed to generate association rules. These association rules hold valuable information about customer purchasing patterns. The implementation of this web mining solution streamlines the FP-Growth algorithm calculations, making it more manageable and efficient when dealing with substantial datasets. The resulting association rules derived from these calculations provide actionable insights for Suzuki's marketing strategies. By offering enticing promotions to customers based on the information gleaned from these association rules, the company aims to enhance spare parts sales.

References

Ardianto, A., & Fitrianah, D. (2019). Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV. Fajar Sukses Abadi. Jurnal Telekomunikasi Dan Komputer, 9(1), 49. https://doi.org/10.22441/incomtech.v9i1.3263

Arhami, Muhammad dan Nasir, M. (2020). Data Mining Algoritma dan Implementasi. Andi. https://books.google.co.id/books?id=AtcCEAAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Buulolo, E. (2020). Data Mining Untuk Perguruan Tinggi. CV Budi Utama.

Devina, I. E., Bandung, I. T., & Bandung, J. G. (2017). Penggunaan Struktur FP-Tree dan Algoritma FP- Growth dalam Rekomendasi Promosi Produk pada Situs Belanja Online.

Khatisma, C. (2014). Klasifikasi Kelompok Konsumen Menggunakan Metode K-Means Dan Segmentasi Model Fuzzy Rfm (Recency, Frequency, Monetary). 1–11. https://repository.uin-suska.ac.id/3547/

Lestari, L., Daryanto, & Zakiyyah, A. M. (2020). Penerapan Algoritma Fp-Growth Untuk Menganalisa Pola Pembelian Konsumen Pada Data Transaksi Penjualan Toko Delima Jaya. Program Studi Teknik Informatika, Fakultas Teknik’ Universitas Muhammadiyah Jember.

Miftahul Huda M.Kom. (2020). Algoritma Data Mining. bisakimia.

Olson, D. L., & Delen, D. (2008). Advanced data mining techniques [electronic resource].

Pranata, B. S., & Utomo, D. P. (2020). Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service). Bulletin of Information Technology (BIT), 1(2), 83–91.

Pratama Putra, I. B. I., & Eniyati, S. (2022). Analisis Pola Pembelian Konsumen pada Data Transaksi Penjualan Suku Cadang Mobil dengan Algoritma FP-Growth (Studi Kasus: PT. Sun Star Motor Kudus). Jurnal Ilmiah Universitas Batanghari Jambi, 22(2), 882. https://doi.org/10.33087/jiubj.v22i2.2004

Putra Langgawan, M.Gilvy Natasia Rahayu, N. (2020). media pembelajaran dengan metode gamifivation untuk meningkatkan motivasi pembelajaran pada perguruan tinggi dimasa covid-19. Media Nusa Creative. https://www.google.co.id/books/edition/Media_Pembelajaran_Dengan_Metode_GAMIFIC/KH5JEAAAQBAJ?hl=en&gbpv=1&dq=metode+waterfall&pg=PA9&printsec=frontcover

Santoso, Budy Azis, A. I. S. Z. (2020). MACHINE LEARNING & REASONING FUZZY LOGIC ALGORITMA,MANUAL,MATLAB & RAPID MINER. Deepublish Publisher cv budi utama. https://www.google.co.id/books/edition/Machine_Learning_Reasoning_Fuzzy_Logic_A/4j_YDwAAQBAJ?hl=en&gbpv=1&dq=nilai+confidence,+support+dan+lift+ratio&pg=PA176&printsec=frontcover

Wibowo, A. R., & Jananto, A. (2020). Implementasi Data Mining Metode Asosiasi Algoritma FP-Growth Pada Perusahaan Ritel. Inspiration: Jurnal Teknologi Informasi Dan Komunikasi, 10(2), 200. https://doi.org/10.35585/inspir.v10i2.2585

Published
2023-12-20
How to Cite
Qonita Adinda Putri, Diana Yusuf, & R.Tommy Gumelar. (2023). RANCANG BANGUN APLIKASI DATA MINING DENGAN ALGORITMA FP-GROWTH PADA DATA PENJUALAN SPAREPART MOBIL SUZUKI RADIO DALAM. Jurnal Sistem Informasi (JUSIN), 4(2), 94-110. https://doi.org/10.32546/jusin.v4i2.2143