Klasifikasi Pneumonia Chest X-Ray Dengan Arsitektur Inceptionresnet-V2

  • Indra Bakti Institut Teknologi dan Bisnis Ahmad Dahlan
Keywords: InceptionResNet, MobileNet, Convolution Neral Network, Chest X-Ray

Abstract

In the last century, the use utilization of machine learning, especially the Convolution Neural Network (CNN)has helped the world of health (medicine). Through action research on image datasets, CNN was successful and able to show classification or grouping based on the same characteristics and properties on unlabeled images with higher accuracy and faster than other machine learning methods. This study aims to optimize two CNN architectures (Inception Res Net-V2, and Mobile Net-V2) to classify Covid-19 disease, by training 4000 Chest x-ray image datasets. The accuracy test results from InceptionResNet- V2 yield 98%, and MobileNet-V2 yield 93%. with the precision of each class of the CNN Inception Rest Net-V2 architecture is Covid (99%), Lung Opacity (97%), Normal (99%), Viral_Pneumonia (99%).

References

Worldometers, “Coronavirus Cases in India,” Worldometers, 2021. [Online]. Available: https://www.worldometers.info/coronavirus/country/india/. WHO Indonesia, “Coronavirus Disease 2019 (COVID-19),” 2021.

Ahmad Naufal, “Selain Hong Kong, Sejumlah Negara Ini Masih Melarang Masuk WNI,” Kompas. com, 2021. (Online).

Available:https://www.kompas.com/tren/reaD/2021/06/25/103000965/selain-hong- kong-sejumlah-negara-ini-masih-melarang-masuk-wni?page=all.

B. Prijono, “Student Notes: Convolutional Neural Networks (CNN) Introduction,” Indoml.com. [Online]. Available: https://iNDOML.COM/2018/03/07/STUDENT-notes-convolutional-neural- networks-cnn-introduction/.

Covid19.GO.id, “Data Sebaran,” 2021. [Online]. Available: https://cOVID19.GO.id/.

G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Going Deeper with Convolutions,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy, “Simulated Annealing Algorithm for Deep Learning,” Procedia Comput. Sci., vol. 72, pp. 137–144, 2015.

L. M. R. Rere, R. Dalam, and K. Baru, “Studi Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network,” vol. 3, 2019.

L. M. Rasdi Rere, M. I. Fanany, and A. M. Arymurthy, “Metaheuristic Algorithms for Convolution Neural Network,” Comput. Intell. Neurosci., vol. 2016, 2016.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MOBILENETV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018.

M. Längkvist, L. Karlsson, and A. Loutfi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” Pattern Recognit. Lett., vol. 42, no. 1, pp. 11–24, 2014.

N. Van Hieu and N. L. H. Hien, “Recognition of plant species using deep convolutional feature extraction,” Int. J. Emerg. Technology, vol.,no. 3, pp. 904 – 910, 2020.

Sebastian Raschka, “Activation Functions for Artificial Neural Networks,” github.io, 2020. [Online]. Available: http://rasbt.github.io/mlxtend/user_guide/general_concepts/activation- functions/.

S. B. Karno, W. Hastomo, and I. S. K. Wardhana, “Prediksi Jangka Panjang Covid-19 Indonesia Menggunakan Deep Learning Long-Term,” Semin. Nas. Teknol. Inf. dan Komun., pp. 483–490, 2020.

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of representative deep neural network architectures,” IEEE Access, vol. 6, pp. 64270–64277, 2018.

S.B. Smith, G.W. Ruhnke, C.H. Weiss, G.W. Waterer, R.G. Wunderink, Trends in pathogens among patients hospitalized for pneumonia from 1993 to 2011, JAMA Intern. Med. 174 (11) (2014) 1837–1839, doi:10.1001/JAMAinternmed.2014.4344.

V. Ayumi, L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy, “Optimization of convolutional neural network using microcanonical annealing algorithm,” 2016 Int. Conf. Adv. Comput. Sci. Inf. Syst. ICACSIS 2016, pp. 506–511, 2017.

W. Hastomo and A. Satyo, “Kemampuan Long Short Term Memory Machine,” vol. 4, no. September, pp. 229–236, 2020.

Published
2022-12-13
How to Cite
Bakti, I. (2022). Klasifikasi Pneumonia Chest X-Ray Dengan Arsitektur Inceptionresnet-V2. Jurnal Teknologi Informasi (JUTECH), 3(2), 107-121. https://doi.org/10.32546/jutech.v3i2.2030